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Apparent large failures of perturbation theory in lattice gauge theory at g* 5 1.0 result from the use of the bare 
coupling constant of the lattice regulator in the perturbative expansion. They can be cured by the use of a coupling 
constant defined by some physical process. Thissituation is thesame as that encountered in dimensionally regularized 
perturbation theory, where the use of a coupling constant definition suggested by the regulator (the MS scheme) 
can make the perturbative expansion appear to be more poorly behaved then it really is. 

1. INTRODUCTION 

Although in principle lattice methods allow the cal- 

culation of any quantity in QCD, without recourse to 

perturbation theory, in practice perturbation theory is im- 

portant to lattice QCD in several ways. Firstly, it provides 

the essential connection between low-energy lattice sim- 

ulations and the high-energy arena of perturbative QCD 

phenomenology through such methods as the operator 

product expansion. Secondly, perturbation theory can ac- 

count for effects on low-energy phenomena due to physics 

at distance scales shorter than the lattice spacing. Pro- 

vided the lattice spacing a is small enough, errors of order 

n and higher can be removed from the theory by perturba- 

tively correcting the action and operators that define the 

lattice theory. Finally, agreement between lattice Monte 

Carlo and perturbative results for short distance quanti- 

ties, where both approaches are expected to be reliable, 

is necessary in order to have confidence in Monte Carlo 

calculations of nonperturbative quantities. 

It is therefore at first sight disturbing to find many 

cases in which Monte Carlo results seem to agree poorly 

with perturbative calculations. To take two examples 

out of many, the first order perturbative result’ for the 

renormalization of the critical hopping parameter n, is 

K, = l/(S - .S69g2) = ,140 at ,/3 E 6/gz = 6.0 us- 

ing the bare coupling constant of the lattice regulator as 

the expansion parameter, while Monte Carlo results 2 give 

15, = ,157. Similarly, the first order perturbative result for 

the expectation value of the lattice gluon geld U in Lan- 

dau gauge is 1 - iTr(lr) = .078g2 = .07S at p = 6.0, 

while Monte Carlo results yield 1 - OTT = .13!I.3 

In this paper we show that the above facts, while 

true, are misleading, and that lattice perturbation theory 

at g2 5 1.0 (cutoff momenta ~/a z 6 GeV) is in fact 

about as well behaved as familiar dimensionally regular- 

ized perturbation at similar momenta. The key point is 

that ~lr.~ is not the best expansion parameter for per- 

turbation theory, despite its natural connection with the 

lattice regulator. The situation of perturbation theory us- 

ing lattice regularization is the same as the situation of 

perturbation theory using the other most common reg- 

ulator for QCD. dimensional regularization, where the 

series obtained in terms of LIMS. the “natural” coupling 

constant for dimensional regularization, often looked like 

nonsense. These series were usually reasonably well be- 

haved when expressed in terms of a coupling constant 

defined from some physical process. or in terms of an 

ad hoc definition such as s chosen to give sensible 

results for many physical processes. (For a discussion of 

the issues in dimensionally regularized QCD perturbation 

theory, see 4.) 
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2. SYMPTOMS OF A POOR CHOICE OF EXPAN- 

SION PARAMETER 

If an expansion parameter orrood produces a well be- 

haved perturbation series, an alternative expansion pa- 

rameter 06.~ G agd(l - 10, OOOC~,,~) will have large, 

uniform second order coefficients of around 10,000. Se- 
ries in terms of o,,,,d, although formally correct, will be 

misleading when truncated and compared with data. The 

symptom of a poor choice of expansion parameter is the 

presence of large, uniform second order coefficients. 

A large second order coefficient appeared in the first 

second order calculation done on the lattice: the calcu- 

lation of the gluonic three point function used by the 

Hasenfratz’s to obtain the ratio of A parameters of the 

lattice and the continuum.5 They found that g(M)?--, 

defined as the coefficient of this three point functionyhyd 

the expansion 

SW)&& 
2 

=so2[1+9,2(Aln + .4312)], 

where 902 = 4a(r~,, and PO = 11/16nsy. The constant 

.4312 in this expression is responsible for most of the 

large ratio of the A parameters. 

Since long distance quantities are well behaved when 

expanded in terms of g(&f)k,. it is immediately obvious 

that all other long distance quantities will have a similar 

constant term. For example, the heavy quark potential 

V(q) at momentum transfer p has the expansion6 

V($) = - %$[l +g&in (GJ + .374)]. 

The crucial point is that, although it may or may 

not be obvious, it is also true that the short distance 

lattice quantities which are now known have a similar 

term. For example, the corrections to the heavy potential 

as a function of distance have the form 7 

V(R) = - g [l + 9Woln ($y + CR)], 

where Cn for various values of R is given in the following 

The constant for R = co can be obtained by Fourier 

transforming the 4 space expression. It can be seen that 

the constants at finite R vary very little from the one 

at R = 00. The smallness of the dependence on the 

distance scale may be less surprising if it is remembered 

that the corrections are dominated by high momentum 

tadpole graphs which are insensitive to the momentum 

of the process. 

As we will see later, Wilson loops also have a similar 

term when Creutz ratios are used to remove self-energies. 

We therefore conclude that the known perturbative 

expansions in alot have the uniform second order coeffi- 

cients which are characteristic of poor choice of expansion 

parameter. 

3. CURE FOR A POOR CHOICE OF EXPANSION PA- 

RAMETER 

To define an improved g*, we can use any quantity 

which is known to second order in ~1,. To keep the argu- 

ment clear and simple, we prefer to use a quantity which 

has been calculated strictly on the lattice. This restricts 

our choices to Wilson loops and the heavy quark potential 

V(q). Bare Wilson loops are inconvenient because they 

have large self energy corrections which have nothing to 

do with the definition of the coupling constant. V(q) on 
the other hand is ideal for our purposes: it is a physical 

quantity which is understood both in the continuum and 

on the lattice. We therefore define g;(q) such that 

qq) G 3-y). 

If the second order term in the series is absorbed into the 

A parameter, weobtain ’ hv = 46.0SAl,1 for SLr(3) with 

no flavors of quarks. We then take g:(Q) = gs((i/:\I,) 

as the approximate coupling strength of a gluon with 

momentum rj and use it to expand other quantities with 

“typical” momenta Q. 

The absorption of the second order correction into 

the A parameter is equivalent to taking the second order 

correction as the first term in a geometric series. This 

boosts the effect of the coupling constant redefinition 

from 40% to nearly a factor of two. Explicit calculations 

of third and higher order terms will provide corrections 

to the improved coupling constant. 

The use of a renormalized coupling constant with 

a much larger A parameter is by far the most impor- 

tant practical component of the renormalized perturba- 



Table 1: The critical hopping parameter K, for Wilson 

quarks, calculated in first order perturbation theory and 

by Monte Carlo. Statistical errors in all data presented 

are of order one in the last digit quoted or smaller. 

tion theory which we are describing. However, in order to 

eliminate ad hoc elements of the procedure to the great- 

est extent possible, we will also define a specific way of 

estimating an appropriate q for each process. We define q 

logarithmically, since we are really interested in a typical 

CL for each process. If we are calculating some integral 

we obtain an average In q2 for the integral as 

< In q2 >= f J d4q f(q) In q2, 

and then define @ as 

q E up+ < In q* >). 

4. COMPARISON OF IMPROVED PERTURBATION 

THEORY WITH MONTE CARLO DATA 

The arguments in Section 3 for choosing an appro- 

priate definition of g2 and scale choice have been made 

solely on the basis of known facts about perturbation the- 

ory, and without regard to Monte Carlo data. Only now 

that we have examined perturbation theory carefully are 

we ready to determine the extent to which it agrees with 

Monte Carlo calculations of short distance quantities. 

4.1. xc 

The integral for the renormalization of I(, is domi- 

nated by a tadpole. We therefore expect it to be domi- 

nated by momenta oforder the lattice cutoff, ~/a. Using 

the procedure of Section 3 yields 4 = 2.58/a. In Table 1 

we compare perturbative results.’ for n, = l/(8-.S69g2) 

with Monte Carlo data2 at several values of p. We 

present the perturbative predictions using alot, our fa- 

vorite scheme crv, and also using m. which serves to 

-1 
i 5.7 11 ,083 1 ,133 1 ,152 1 ,176 1 

6.0 11 ,078 1 ,122 ( .138 1 .139 
6.4 (I ,074 1 ,110 1 .122 ( .117 

Table 2: The expectation value of the trace of a link 

in Landau gauge, calculated in first order perturbation 

theory and by Monte Carlo. 

illustrate the effects of different choices of improved cou- 

pling constants. For p 2 6.0, the deviation between the 

data and the free field value o(= = .125) agrees with 

renormalized perturbation theory to within 20%, but dis- 

agrees with perturbation theory using alot by around a 

factor of two. 

4.2. < Tr(U) > 
The integral for 1-32?(U) = .07Sg* is pure tadpole. 

and we therefore expect it to have slightly higher average 

momentum than the integral for n.. We tind - 

In Table 2 we show results for 1 - fTt(U). s = 2.so’cL. Just as in 

the previous case, for @ 2 6.0, the deviation between the 

data and the free field value (1 - +2?(U) = 0) agrees 

with renormalized perturbation theory to within 20%, but 

disagrees with perturbation theory using arot by almost 

a factor of two. 

4.3. Wilson Loops and Creutz Ratios 

Large Wilson loops have badly behaved perturbative 

expansions for a trivial reason: they contain a self-energy 

contribution proportional to the length of the loop. For 

large loops, contributions to this self-energy approxi- 

mately exponentiate. so one expects the logarithm of the 

Wilson loop to be better behaved in perturbation the, 

ory. Taking Creutz ratios of loops also has the effect of 

reducing both linear self-energies and also corner terms 

from loop expectation values. We therefore examine the 

logarithms of Creutz ratios, as the quantities having the 

best chance of being well behaved in perturbation the- 

ory. Smce the tadpole terms present in the self-energies 

are removed by taking Creutz ratios, we expect to find 

smaller momentum scales for these objects than we did 

for the previous two examples. Indeed. we find for the 

log of the smallest Creutz ratio, -log(x2.2), the scale 

Q = 1.10/a. We find increasingly smaller scales for in- 

creasingly large loops, also as expected. In Table 3 we 
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Table 3: The negative of the logarithm of the expectation 

value of the 2,2 Creutz ratio, - log(xa,s), calculated in 

first and second order perturbation theory and by Monte 

Carlo. 

show results for - log(xs,s).8 For 0 > 6.0, the one loop 

results show a pattern similar to the previous two ex- 

amples. The two loop results for ~1~~ are much larger 

than the one loop results, a symptom of a bad expan- 

sion. The two loop results for m and av are quite 

close to the one loop results, showing that this Creutz 

ratio does indeed have about the same second order co- 

efficient as V(q) which we used to define the expansion 

parameter. They are also extremely close to each other, 

showing that both the renormalized Q’S are reasonable 

expansion parameters. 

A feature of the data not present in the previous 

examples is that they lie systematically above the per- 

turbative predictionsof either of the renormalized expan- 

sions. At small B this is not surprising: a nonperturbative 

area law exists. What is surprising is that the observed 

deviations at p 2 6.0, although they are small and per- 

haps cannot be taken too seriously, continue to fit the 

area law. Such behavior, if it were real, would signal a 

breakdown of the perturbative calculability of the coeffi- 

cient functions in the operator product expansion for the 

Creutz ratios. (The relevant operators are 1 and F&. 

There is no dimension two operator expected to produce 

an area law at short distances.) This would have serious 

implications for the applications of the operator expan- 

sion to sum rules, and therefore clearly deserves more 

careful study. 

5. SUMMARY 

We have shown that perturbative expansions using 

the bare coupling constant of the lattice regulator ex- 

hibit the same symptom of a poor choice of expansion 

parameter as do those using the MS coupling constant: 

large uniform second order corrections. This is true both 

of long distance and short distance quantities. When a 

renormalized coupling constant is used for lattice pertur- 

bative calculations, many Monte Carlo calculations which 

seemed to be in bad disagreement with perturbation the- 

ory are seen to be in reasonably good agreement after all. 
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